大阪公立大学工学部海洋システム工学科 概論

浮体運動学と

海事流体力学研究室における研究活動

Ver. 3.0

大阪公立大学海洋システム工学分野 二瓶 泰範 http://hydrodynamics.marine.omu.ac.jp/

2024年4月

目次

第1章	四胴型自動航行船の研究開発とその適用	2
1.1	養殖現場における課題と自動航行船	2
1.2	研究開発の歴史 (2015 年度 ~2019 年度)	3
1.3	基礎研究	5
1.4	四胴型自動航行船の実証事業 (2020 年度 ~2022 年度)	6
1.5	四胴型自動航行船の技術移転・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
第2章	浮体式洋上風車の研究開発	9
2.1	洋上風力発電	9
2.2	浮体式洋上風車とは	10
2.3	基礎研究 — 一点係留方式を用いた浮体式風車の実海域試験	11
2.4	浮体式洋上風車の課題と今後に向けて	11
第3章	ロボット漁船の研究開発	14
3.1	技術ニーズと技術シーズ - ロボット漁船	14
3.2	研究開発経緯	17
3.3	社会実装に向けた実証試験 $(2024$ 年 2 月から開始 $)$	18
3.4	実用化・産業化の見込み	23
3.5	ロボット漁船を製造するスタートアップ企業の立ち上げ	23
第4章	あとがき	25
参考文献		26

はじめに

大阪公立大学工学部海洋システム工学科(大学院でいうと工学研究科航空宇宙海洋系専攻海洋システム工学分野)に所属している二瓶研究室は海事流体力学に関する研究をしている。海事流体力学は英語では Marine Hydrodynamics とも呼ばれ,海洋構造物や船舶に関わる流体力学に関する研究を主たる研究テーマにしている。海事流体力学の大きな特徴は,海洋構造物や船舶といった浮体とその周りの流体との相互干渉の問題を主に取り扱うことである。

浮体が海面に浮かんでいるところを想像すると、浮体は波だけでなく、風、流れの影響を受けることは納得できる。同時に、浮体が運動することで新たな波を作り出すことも理解できる。また、船には舵があって船の操船制御も行なうわけであり、より一層浮体周りの流体現象は複雑になることが想像できる。海洋構造物においても、例えば近年研究開発が進む浮体式洋上風車も風の中で風車はそのブレード角を制御している。その為、海事流体力学は浮体運動、流体、制御が連成している問題を取り扱う学問だと位置付けることもできる。

加えて海洋工学は総合工学とも称される。一つの部品要素が最適であっても、総合的にシステム全体を見渡した時に、必ずしもそれは最適であるわけではない。また、素晴らしい部品の組み合わせであってもシステムは決して機能しないのである。全体を最適化するようデザインを何度も何度も繰り返すことが必要なのである。社会といえば大袈裟だが、何か大きな問題点を見つけ、それを解決するシステムを生み出し、そのシステムの実証試験を行い、その中で再び新たな問題点を見つけてそれを改善し、社会に実装していくことが何よりも大切である。分析力だけを高めることだけでは大きな問題は解決しないのである。

本誌はこれまで海事流体力学研究室で実施してきたプロジェクトを簡単に纏めたものである。一つは四胴型自動航行船の研究開発と適用事例を示したものであり、もう一つは浮体式洋上風車の研究開発事例である。最後の一つは現在大きく研究開発を進めているロボット漁船である。この資料を読み、海事流体力学や総合工学の面白さに興味を持っていただけたら幸いである。

第1章

四胴型自動航行船の研究開発とその適用

養殖場の水質環境の詳細な把握は、海面養殖や内水面養殖にはなくてはならない。一方で養殖場は広大であるので、従来の人手に頼る方法やブイによる一点だけの計測は情報不足となってしまう。そこで筆者が独自に研究開発してきたのが、四胴型自動航行船である。本章では主たる基礎研究例や研究開発の歴史について述べる。また、本四胴型自動航行船は筆者等による特許が多数組み込まれている。更には、この大学発特許は企業へと技術移転しており、新規事業へと発展している。筆者が経験し、考える技術移転のノウハウについても触れてみたい。

1.1 養殖現場における課題と自動航行船

国際的な肉・魚等の動物性たんぱく質の摂取量は飛躍的に増大しており、陸上部で生産される牛肉等のたんぱく質だけでは足らず、水産資源で賄われている。2010年には牛肉より水産資源である養殖魚が上回ってきた(図 1.1). 他方、日本国内においては海水温度の上昇による海洋環境変動の影響を受け資源量が減少したことにより我が国の漁業生産量が長期的に減少傾向にあるという課題に直面しており、漁業全体の生産量はピーク時の 33%程度まで減少している。結果として価格が高騰し魚離れが進み、牛肉・豚肉・鶏肉等に移行しつつあり、水産資源の低コスト化が強く望まれている。その大きな担い手として養殖業がある。漁業全体の生産量が減少する中、養殖業は安定した生産量を維持し、今や全体の約 24%の水揚げ量を占める(図 1.2). 生産額においてもその重要性が高まっており 2017年には約 40%を占めるなど、今や養殖業は我が国水産業における一大産業であると言える。特にインバウンドに代表される国際的な日本食ブームにより、低コスト化はもとより高価格でも高品質であれば確実に需要が伸びる見通しが出てきたことは養殖業界にとって大きなフォローとなってきた。また、水産資源の減少と共に海洋環境の悪化や燃料の高騰、漁業者の高齢化や後継者不足等の問題に直面しており、益々養殖業への期待が高まっているのが現状である。

一方で、海面養殖はリスクと隣り合わせでもある。大きな原因として挙げられるのが、貧酸素水塊、低塩分水、水温上昇、貝類にとっての餌といえる植物プランクトン(クロロフィル a)の欠如、赤潮等による水質環境悪化である。最近、観測史上類を見ない台風・集中豪雨等の異常気象に起因する養殖魚介の斃死、実入りの悪化が生じ、養殖漁業に深刻かつ重大な経済的悪影響を与える事例が起きている。図 1.3 にそのいくつかの事例を挙げる。このような事例は枚挙にいとまがなく、養殖漁業者、漁業協同組合、地方公共団体等々にとって、水質環境の高精度なモニタリング及び高精度な水質予報は喫緊の課題であり早期対応が望まれている。

以上の背景から、養殖場の水質環境の詳細な把握は、海面養殖や内水面養殖にはなくてはならない.これに対して、情報通信分野、水質モニタリング分野、漁業組合、地方公共団体、水産試験場等では協業して、水温、塩分、溶存酸素、クロロフィル a 等の水質モニタリングを行ってきている.また、飛躍的に計算機性能が向上した昨今、数値天気予報に実観測データを活用することにより、天気予報精度が上がっている.海洋の水質シミュレーション技術も、スーパーコンピュータを使うことによって計算可能な解像度が大きく向上しているが、その計算解像度に比べ、現場の実観測データ量が大きく不足しており、シミュレーションの精度検証に至らず、養殖場での水質予報に運用できていないのが現状

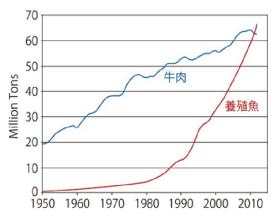


図 1.1: 世界の養殖魚と牛肉の生産高 (出典:国連食糧農業機関,米国農務省に基づき EPI が作成)

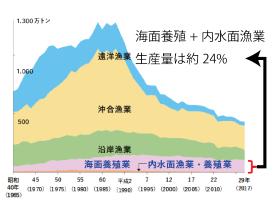


図 1.2: 漁業・養殖業の生産量の推移 (出典:水産庁 「平成 30 年度水産白書」)

養殖のエゾバフンウニ

低塩分水で斃死した 北海道浜中町火散布 沼の養殖ウニ

赤潮の影響で斃死した 養殖魚

図 1.3: 養殖業の被害事例

である.

養殖場のような数 $km \times$ 数 $km \times$ 2 $km \times$ 2 $km \times$ 3 $km \times$ 4 $km \times$ 5 $km \times$ 7 $km \times$ 6 $km \times$ 7 $km \times$ 9 $km \times$ 9

我々は、このロボセンを養殖場に適用している。2018 年度、2019 年度の実海域試験は石川県七尾湾のカキ養殖場で行われた。2019 年度は半日で80 地点、水深方向にそれぞれ5つ、計400 か所の超高密度な自動水質計測を実現し、これまで知られていなかった水温や塩分や溶存酸素等の日周期変動等を明らかにしてきた。また、国立環境研究所中田聡史博士が手掛ける数値計算と連携させることで超高分解能水質シミュレーションの高精度化を目指す取り組みを始めている。

1.2 研究開発の歴史 (2015 年度 ~2019 年度)

四胴型自動航行船の研究が始まったのが 2015 年度.最初は台所にあるボールにポッドプロペラをつけたような試作機からのスタートであった.次の試作機は 4つのハルとそれぞれのハルにはプロペラを付け,それぞれのハルは独立に回転が出来るという現在のロボセンの原型が出来上がることとなる.予算も限られていたため,ほとんどが研究室のメンバーによる手作りといっても良い(図 1.8).

翌年度の 2016 年度、いよいよ実機サイズの GFRP 製ロボセンの製作フェーズへと移行することとなった.そして

図 1.4: 四胴型自動航行船

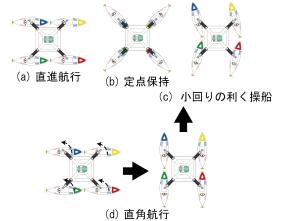


図 1.5: 船体が独立に回転することが出来, 様々な操 船が可能

図 1.6: 2018 年度の実証試験の様子 (You Tube より)

図 1.7: 2019 年度の実証試験の様子 (You Tube より)

2017 年 1 月,我々が現在 RS-01 と開発番号を付けているロボセンの誕生である (図 1.9). 船体の材料は小型船で使われる GFRP(ガラス繊維強化プラスチック) を用いており,海での長期使用が可能なものとなっている。2 月,3 月には大阪府立大学でのプールでの基礎実験と,神戸大学深江キャンパス内のポンドをお借りしての実験を行い,2016 年度を終えることとなった.

2017 年度からは総務省戦略的情報通信研究開発推進事業(SCOPE)の事業採択を受け自動制御部の研究開発を行うこととなった (図 1.10). そして 2018 年度には目標点への移動,定点の保持,水質の自動計測を可能とした.石川県七尾西湾カキ養殖場にて自動観測を実施するに至った.これは前節の You Tube 動画で示した通りである.

(a) 船体はバルサ材を組み合わせて製作

(b) 四胴船の基本コンセプトが決まった

図 1.8: 2015 年度の実験機

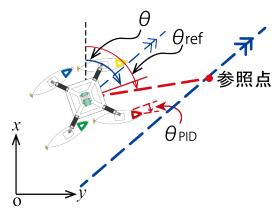
図 1.9: RS-01 号機の完成

図 1.10: 2018 年 1 月 SCOPE 採択を受けて本学広報より

1.3 基礎研究

これまで四胴型自動航行船の研究は主にハードウェアに関する研究とソフトウェアに関する研究とに大別される. また, 近年では多機運用することも想定してこの自動航行船の航路最適化問題にも取り組みつつある [3]. また, 無人航空機 (所謂ドローン) と連携した応用研究についても取り組んでいる [4].

ここで言うハードウェアに関する研究とは、四胴型自動航行船というシステムの物理的な構成要素部分に関わる研究のことを指している。つまり、例えばこの船の流体力学的な特性を調べ、この船自体の性能を明らかにすることである。また、この船を実際の海で使うときに、どのような時に壊れるかを予め把握しておくことも重要となろう。つまり構造的な特性を調べることが重要である。主にこの2点がハードウェアに関する研究である。一方で、ソフトウェアに関する研究とは、主に四胴型自動航行船の自動制御に関する研究のことを指している。図 1.5 に示す通り、四胴型自動航行船は様々な航行形態が考えられ制御方法も航行毎に変わる。以下、二瓶等によって纏められ、土木学会論文集 B1(水工学) に収録されている四胴型自動航行船の性能および操船制御について述べられた論文 [5] からの抜粋 (- 部改変) である。


1.3.1 四胴型自動航行船の直進制御手法

Komizo et al.[6] の研究では,左右のプロペラの推力の差で回頭制御を行っていたが,スムーズな直進制御であったとは言い難い.そこで,本船の大きな特徴である図 1.11 に示す「くの字」の航行形態を用いた操船方法について述べる.次の計測地点等の目標地点に向かう際,参照点の角度と船体の角度にずれが生じた場合,船体角度を変え目標点に向かうようにする.この直進制御は PID 制御で行われており,この PID 制御時の船主側の船体回転角度 θ_{PID} を以下の式 (1.1) に示す.尚, θ_{PID} は船固定座標系に対する回転角である.また,船尾側の胴体は $-\theta_{PID}$ 回転させる.ただしこの新手法ではプロペラ回転数の制御値は常に一定である.

$$\theta_{PID} = K_P \Delta \theta + K_I \int \Delta \theta dt + K_D d\theta / dt \tag{1.1}$$

 $K_P,~K_I,~K_D$ は比例,積分,微分ゲインである. $\Delta\theta$ は t=t における目標航路との偏差角で図 1.11 中 $\theta_{ref}-\theta$ と表される.

この制御方法を組み込んだ海上試験を実施した. 図 1.12 に計測点に向かい定点保持し計測作業を行っている際の航跡を示す. 計測点に対する定点保持の平均誤差は 1m 前後, 計測点間の目標航路に対する平均直進誤差は約 1.6m であった. 提案する直線制御法の有効性が検証できたといえる.

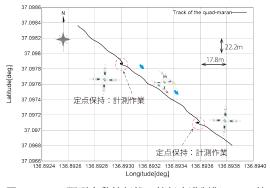


図 1.12: 四胴型自動航行船の航行直進制御による航跡

図 1.11: 操船制御手法

1.3.2 四胴型自動航行船の風圧下及び実海域での航行性能

本船の風圧下での性能は簡単な VPP(Velocity Prediction Program) を構築することにより明らかにした.船固定座標系における船長手方向の力のつり合い方程式を以下の式 (1.2) に示す.

$$-R_0 - X_A + (1-t)T = 0 (1.2)$$

ここで, R_0 は船体抵抗 [N], X_A は上部デッキ空力抵抗 [N],T はプロペラ推力 [N],t は推力減少率である.船体抵抗 及び空力抵抗は回流水槽試験,風洞試験により求め,プロペラ推力はデータベース [7],推力減少係数は Van Lammern の推定式から求めた.各風向に対する上部デッキの船速方向の抗力を計測した風洞試験の結果を図 1.13 に示す.また 各プロペラの回転数は一定,喫水は満載喫水時の半分の 10cm として計算を行った.この喫水は実海域試験時の喫水である.

図 1.14 に式 (1.2) より得られた絶対風向 ($0\sim180^\circ$),絶対風速 ($0\sim10\text{m/s}$) に対する船速の推定結果のポーラーカーブを示す (風が 0° 方向から来ている場合に各方向に航行する船速).例えば風速 10m/s,風向 0° の正面向かい風中を本船が航行する場合,無風時と比べ 56% 程度船速低下がみられ航行性能に大きく影響を及ぼすことが分かった.

また風速が 1 m/s 以下の実海域環境下で複数回一定時間直進航行させ,本船の船速を調査した.この実海域で得られた船速を図 1.14 の VPP による推定結果と比較した.実海域試験の船速は 0.998 m/s であったのに対し,無風時の推定結果は 1.14 m/s であった (ただし潮流,波等の外乱及び PID 制御に伴う抵抗の増加は考慮していない).推定手法との誤差は 12.8% であった.

1.4 四胴型自動航行船の実証事業 (2020 年度 ~2022 年度)

四胴型自動航行船の実証事業として付帯装備の高度化技術を開発することを行っている。また、得られた水質ビッグデータにより超高分解能水質シミュレーションを高精度化している。さらにAI技術を導入し養殖場の水質予報システムを開発している。付帯設備が高度化した四胴型自動航行船による水質ビッグデータと市販PCで実行可能な水質予報、この両者を開発することにより養殖漁業の持続可能な成長に貢献する取り組みを行っている。これらの技術を開発する為、2020年度から2022年度まで戦略的基盤技術高度化支援事業の支援を受けた。図1.15に2020年度の本学広報による資料を、図1.16に2021年度の本学広報による資料を示す。

本自動航行船が将来的にこのロボセンが広く活用されるためには、1人でも容易な操作が望まれる。本事業における付帯装備技術とは例えばモニタリング情報データ通信モジュールおよびアプリケーションの研究開発や、障害物回避・夜間航法の研究開発、自動着岸法の研究開発、自動アンカリング装置 (緊急時対策)の研究開発、深浅測量技術と連携した自動計測・自動航行システムの研究開発のことを指している。

また、四胴型自動航行船による超高分解能水質シミュレーションの適用 (図 1.17) や AI (人工知能) による水質予測

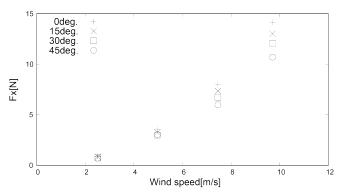


図 1.13: 上部デッキの風洞試験結果

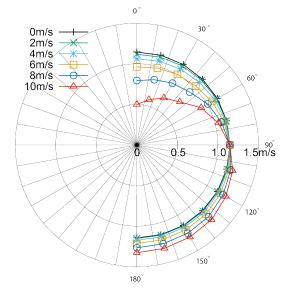


図 1.14: 四胴型自動航行船の風圧下での航行性能

図 1.15: 2020 年度の四 胴型自動航行船 プロジェクトの 広報

図1.16: 2021 年度の四 胴型自動航行船 プロジェクトの 広報

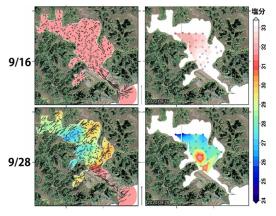


図 1.17: 実際の塩分計測とシミュレーション結果

システムの研究開発や養殖場ごとのきめ細かい水質予報の確立を行い、漁業者等が自ら水質予報するシステムの試験運用を実施してきた.

1.5 四胴型自動航行船の技術移転

技術開発はニーズ調査に始まり、コンセプト検証、特許出願と取得、小規模実証試験、大型実証試験. これが大きな流れとなろう. 四胴型自動航行船の技術移転は正にこの流れに乗って進めてきた事例である. ニーズ調査では 1.1 節に示した通り、海面養殖漁業における水質の調査というニーズがある. これまでのブイの方式や人による計測は課題があって、これを補うために小型の自動航行船を用いた多面的な自動計測技術構築やこの多面的な計測データを用いた高精度な水質シミュレーション技術の構築が必要であったことを述べた. 我が国のみならず世界的に見ても多面的に自動計測する技術は存在していなかったことを踏まえ 2015 年度より研究開発を開始した. 海上では風や流れもあり定点を保持することが難しく、計測作業中は船が流されてしまう. この点から海上で航行形態を変えられるコンセプトを有する四胴型自動航行船を生み出した (図 1.8).

どこまでを PoC(Proof of Concept:コンセプト検証) と言うかというのは現場での研究開発を担当する者として明確な定義があるとは思えない. 何故なら小規模な実証試験を行っていても課題が見つかり, コンセプトそのものの見直しを新たに迫られる場合もあるだろうからである。一応, 自分たちの技術の成熟度を説明する指標として技術成熟度レベ

ル (TRL:Technology readiness levels) というものがある [8]. この TRL は航空宇宙産業用に NASA が定義したもの であるから, 自分たちの開発に置き換える必要がある.

	TRL	四胴船開発時期
Level1	基礎理論の着想段階	2015, 2016 年度
Level2	技術要素の適応、応用範囲の明確化	2015, 2016, 2017 年度
Level3	技術実証のデモンストレーション (PoC)	2017 年度
Level4	ラボレベルでの実証	2018,2019 年度
Level5	シミュレート及び実空間での実証	2020 年度
Level6	地上でのシステムとしての技術成立性の確認	2020 年度
Level7	宇宙空間でのシステムとしての技術成立性の確認	2021, 2022 年度
Level8	システムの運用テスト、認証試験	2022 年度
Level9	最終段階、実運用	2022 年度

表 1.1: TRL([8] 参考) と四胴型自動航行船の開発レベル

四胴型自動航行船の場合で言うと、2018 年 4 月から 2020 年 3 月までの時期が TRL4 であったと考えている (図 1.6, 1.7). 実機の四胴型自動航行船が出来上がり、制御則の構築や定点保持制御の構築が行われた。実海域という実空間でのテストではあったが、制御則等はまだ試験実証の意味合いが強かった。この間に基本的な特許出願も終えている [1, 2]. また、制御則や性能を研究したのもこの時期と重なる [5]. TRL4 までは大学における研究開発という域であるが、TRL5 以上は実空間での実証ということとなり、技術に加えて事業化を見据えた実運用が重要となる。これが 2020 年度から始まった戦略的基盤技術高度化支援事業となる。(図 1.15)

技術移転という意味では TRL4 までを大学等の研究機関で行い, TRL5 以上を事業者が実施するというのがスムーズな移転かと思われる。大学の研究室には実空間での実証をする為のマンパワーが圧倒的に足りていないのが現状であるからである。いずれにしても技術移転で一番重要なことは, 両者が社会課題を認識・共有し, 協力して課題解決という目的に向かっていけるか否かである。

第2章

浮体式洋上風車の研究開発

海事流体力学研究室ではエネルギー問題の解決の一助を目指して 2010 年より浮体式洋上風車 (Floating offshore wind turbine) の研究を実施してきた [9]. 日本のみならず世界でもエネルギー問題は大きな転換期にいると言って良い. この章では洋上風力発電の近年の世界的な動向について述べる. その後, どうして浮体式なのか, 浮体式風車はどういう構成で成り立っているのかについて説明する. また, 用いられる浮体構造, 係留技術等についても述べる. さらに, 海事流体力学研究室で取り扱ってきた浮体式風車の基礎研究について述べたい. 特に一点係留式浮体式風車について注目して述べることとする. 最後に世界的にも広く研究開発が行われているこの浮体式風車の分野であるが, 残されている課題についても述べることとする.

2.1 洋上風力発電

2015 年 12 月の第 21 回気候変動枠組条約締約国会議 (COP21) でパリ協定が採択された. 世界的な平均気温上昇を産業革命以前に比べ 2° C より十分低く保つとともに, 1.5° C に抑えるよう努力を続けることを目標に掲げた.また,各国は温室効果ガス (greenhouse gas:GHG) の人為的な発生源による排出と吸収源による除去量を均衡させるよう取り組むことが求められている.いわゆるカーボンニュートラルを意味している.日本ではパリ協定合意に先立つ 2015 年7月に 2030 年度に GHG 排出量を 2013 年度に比べ 26% 削減する目標を掲げた「日本の約束草案」を地球温暖化対策本部で決定している.長期戦略では 2050 年までに 80% の GHG 排出削減を掲げている.図 2.1 に,2020 年に明らかにされた 1 次エネルギーの国内供給の推移を示す [10].

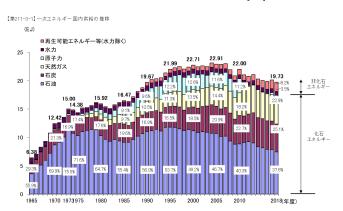


図 2.1: 一次エネルギー国内供給の推移 [10]

図 2.2: デンマーク最大の Anholt 洋上風力発 電所 [11]

以上の理由から洋上での再生可能エネルギーの研究開発が世界的に活況を呈している。洋上での再生可能エネルギーは風力・波力・潮流力が挙げられる。ここでは特に洋上での風力発電について述べる。風力発電は陸上での実績も多数あり、さらには洋上の風は比較的安定しており平均風速も高いことから洋上の風力発電の実用化が期待されている。洋上風力には大きく2つの設置工法がある。1つが着床式であり、もう1つが浮体式である。水深30m~50mくらいま

では着床式を用いることが可能である。着床式は欧州で既にかなり多く導入されてきている。図 2.2 に洋上風力発電の 1 例としてデンマーク最大の Anholt 洋上風力発電所を示す [11]。日本でも今後さらに進展が進む分野と言えよう。また,欧州では風車の大型化や設置までの効率化も進んできている。例として図 2.3 にデンマーク・エスビアウ港を示す [12]。そして欧州では 10 円/kWh を下回る価格で売電される事例も報告されている。

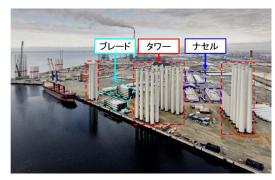


図 2.3: 欧州での組み立ての効率化様子 [12]

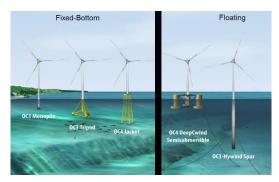


図 2.4: 洋上風車の基礎 [13]

最後に着床式の洋上風力発電の基礎部分に着目する.図 2.4 に基礎部分のイメージ図を示す [13]. 水深の深さに応じて基礎部分を使い分けるのが一般的である. Monopile 式といってタワーを海底に差し込むもの, Tripod 式といって組んだ架台を海底に打ち込む方法, Jacket 式といって鋼管をトラス式に組むものとの大きく 3 つに分けられる. この他にも重力式といってコンクリートを円錐状にしたものもある.

2.2 浮体式洋上風車とは

図 2.5: 浮体式風車の浮体形式 [14]

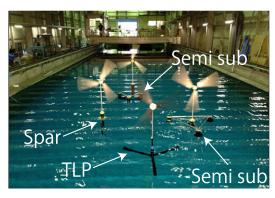


図 2.6: Nihei et al. による水槽試験 [15]

水深が 50m を超えてくると着床式から浮体式が必要となってくる。浮体式になると風車タワーから下は浮体と,係留チェーンや係留ワイヤーや係留ロープ等と,アンカーとなる。図 2.5 及び図 2.6 に浮体式風車用の浮体形式を示す。 (a) スパー型 (Spar:筒),(b) セミサブ型 (Semi submersible:半潜水式),(c) TLP 型 (Tension Leg Platform),(d) バージ型 (barge:箱船) に大きく分類される。一般的にスパー型は構造が単純なため製造コストを他の浮体より低く抑えることが可能である。一方で,タワー高さと同等程度の喫水が必要となり使える水深が限られる。スパー型はコストが低いということもあり使用海域さえあれば商業利用が一番最初に始まる。Scotland の北東部沖合 25km の沿岸に 5 基の 6MW のスパー式風車が 2017 年から商業運転している (図 2.7 [16])。また日本でも九州五島沖で商用運転の計画が進行中である [17]。図 2.8 は五島沖の浮体式風車である。現在は 1 機浮いているが,今後数機での商用運転が始まる。

次に浮体の係留方法について述べてみたい.係留は係留の素材としてチェーンを使うか,合成繊維ロープを使うか,ワイヤーを使うというのが現在の海洋構造物の主流である.係留方式はカテナリー係留という方式が一番多く利用され,緩く浮体をつなぎ留めることで波からの力や風による力を逃すようにする.また,多数の係留チェーンを使って浮体を多方向から海底とつなぎ留め浮体の振れ回り(回転)を許さないものと,一点係留という敢えて振れ回りを許し波

図 2.7: Scotland 沖の Hywind Scotland

図 2.8: 五島沖の浮体式風車

や風といった外力から逃す方法とがある.一点係留方式は技術的に難しい面もあるが,次節および次々節で述べる通り 水深が 50m~100m といった多くの海域で使える浮体式風車が研究開発されている.

2.3 基礎研究 — 一点係留方式を用いた浮体式風車の実海域試験

当研究室では世界で初めて一点係留式浮体式風車の実海域試験を行った (2015 年 [18]). 設置海域は石川県の七尾湾である. 小型の浮体式風車ではあったが、本浮体式風車は約 1ton の質量、発電から陸上への送電ケーブルがあり、風車ブレードのピッチ制御(翼の迎角の制御)も可能な仕様となっている. また、係留設計、浮体設計、風車設計、施工設置、運用・保守、撤去まで全てを実施している. 「一点係留式」という新しい技術ということもあり、係留設計は特に工夫を凝らしている [19]. この工夫について力学的考察を加えたもの [20] について抜粋および日本語訳したものをここで簡単に紹介する.

図 2.9 に一点係留方式浮体式風車の簡易図を示す. 本浮体式風車は, 風車ブレード, 風車ブレード迎角コントロール機構, 発電機, 送電ケーブル, 制御ケーブル, 浮体, 浮体と係留とをつなぐ回転機構部, 係留チェーンで構成される. 浮体は図 2.9 における Rotational Axis まわりに回転するのがこの浮体式風車の特徴である. 電気ケーブルと制御ケーブルは浮体と絡まないようにするために回転機構部の中を通す必要がある.

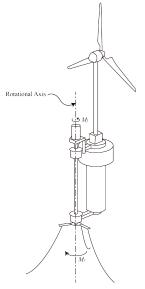
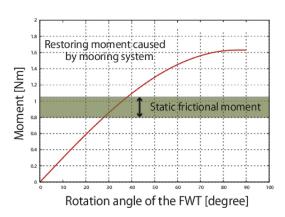

同図において回転機構部上部にあるベアリングの摩擦モーメントを M_f ,係留チェーンによる復原モーメントを M_r とすると $M_r > M_f$ である必要がある。回転機構上部のベアリングがこの条件を満たさないと係留チェーンは回転機構と一緒に捻じれていく。図 2.10 に実際の計測により得られた回転機構部の摩擦モーメント (緑部) と係留チェーンによる復原モーメント (赤線) の関係を示す。横軸が浮体の回転角度であり,縦軸がモーメントである。この関係より浮体が約 40° 回転するとき係留チェーンによる復原モーメントの方が大きくなりチェーンは捩れずに浮体は回ることが出来る。

図 2.11 に石川県七尾湾において実施した実海域試験の断面図を,図 2.12 にその時の写真を示す.図 2.13 はその試験の時の結果の一部であり,横軸が時間,縦軸が風速,風向,浮体向きを示している.風向 (青点) が変化すると浮体向き (緑点) が風向に追従することが出来ることが明らかになった.


2.4 浮体式洋上風車の課題と今後に向けて

最後に課題と今後に向けて述べる. 現在取り組まれている浮体式風車のプロジェクトは 50m~100m といった多くの海域でも使用できる浮体式風車となる. そうなると浮体形式としてはバージ型またはセミサブ型が候補として挙げられる. また浮体式風車の一番のネックはそのコストである. コストをいかに下げていくかも重要な課題である. 現在取り組まれているプロジェクトはその課題を解決しようとして取り組まれている. そのいくつかを紹介する.

一つ目のプロジェクトがバージ型浮体を用いたものである。現在,フランスや日本で取り組まれている [21]. 洋上であるため風車ブレードの回転数を上げても良いという発想から 2 枚翼を用いている。これにより風車の軽量化に繋がっている。また浮体のコスト軽減を狙ってコンクリート浮体も当初検討された。図 2.14 に示すように現在北九州沖において実証試験が行われている。

 \boxtimes **2.9:** Physics model of the mooring system

 $\ensuremath{\boxtimes}$ 2.10: Relation between each moment

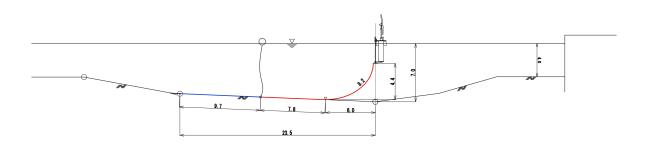
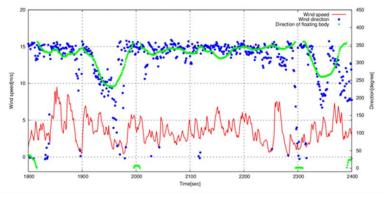
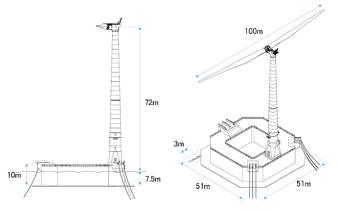



図 2.11: 実海域試験の断面図



 \boxtimes 2.12: Photo of the FWT model in the real sea test

図 2.13: Weather vane test result in over 3m/s wind velocity

(a) 北九州沖におけるバージ型浮体式風車

(b) バージ型浮体式風車主要目

図 2.14: NEDO 北九州沖における浮体式風車プロジェクト [21]

また、風車が巨大化し、これに伴い風車タワーの上部に設置する発電機も巨大化している。故にタワーにも負担が生じている現状にある。そこで導入が検討されているのが、ガイワイヤー等によってタワーをサポートするといったアイディアである。ガイワイヤーと風車ブレードとは干渉してしまうので、風車が風向に追従するために必要なヨーイング装置を廃し、一点係留を用いて浮体ごと風に追従する仕組みである。一点係留方式は既に前節で述べたとおりである。Suzuki、Nihei et al. は図 2.15 に示す一点係留式浮体式風車の 1/60 模型試験を実施している。波浪中の構造応答 [22]や潮流・波浪・風の複数の環境条件下での振れ回り挙動について明らかにしている。図 2.16 はその試験模型である。時々刻々と変化する風荷重を模擬するためにこの水槽試験ではファンをリアルタイムに制御し、風荷重を模擬するという Real Time Hybrid Model 試験という新しい試験方法が導入されている。一点係留式浮体式風車は日本だけでなくフランスでも EOLINK によって研究開発が進んでいる [23]。基本的な考え方は同じであるが、この EOLINK は、タワーそのものがない。このように、国土に近く比較的送電し易い海域を利用する浮体式風車の研究開発が続いている現状にある。

図 2.15: NEDO による一点係 留式浮体式風車

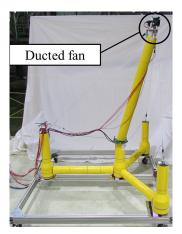


図 2.16: Real Time Hybrid Model 試験機

図 2.17: France Brest 沖の EOLINK

第3章

ロボット漁船の研究開発

本章ではロボット漁船の研究開発について述べる。このロボット漁船も四胴型自動航行船同様に筆者等による出願特許を活用した技術移転事例である。養殖漁業においても人手不足は課題となってきており、我が国の豊かな食の維持の為には養殖漁業の生産性向上も同時に図っていかなくてはならない。この社会課題解決のために生み出されようとしているのがロボット漁船である。本章では技術ニーズと技術シーズについて述べた後、研究開発経緯について触れる。本ロボット漁船は2023年度終了時点では小型模型の試験を終えたばかりの段階であり、本格的な実海域実証試験は2024年度から始まる。社会実装に向けた実証試験の流れについても触れたい。

ロボット漁船は1章の四胴型自動航行船とは異なり、社会実装に際して筆者自らが代表となったスタートアップ企業である株式会社ロボティクスセーリングラボ [24] を立ち上げることによりこれを果たそうとしている。ロボティクスセーリングラボ社は大学発ベンチャーの認定を受けてはいるが [25]、大学発のスタートアップ企業である。大学発ベンチャーとスタートアップ企業との違いにも簡単に触れ、スタートアップ企業による社会課題の解決という手段を選んだ理由についても述べてみたい。

3.1 技術ニーズと技術シーズ - ロボット漁船 -

養殖漁業が成長産業であることは既に 1.1 節で述べた通りである.ここでは養殖の課題の一つと言える給餌の課題について触れる.

水産業は、資源の減少と共に燃料の高騰、漁業者の高齢化や漁業従事者減少の問題に直面している。特に漁業従事者の減少は著しく、1988年から現在までの30年間で1/3程度となっている(図3.1)。水産庁によると2050年にはさらに半分以下になると予測されている。その一方で、水産業の中でも近年益々重要になってきているのが養殖漁業と言える。しかし、漁業従事者の減少は下げ止まることはないので、養殖漁業の機械化・自動化・情報化を実現し、生産性の効率を図っていかなくてはならない。この一環として養殖現場では、生け簀ごとに据え置き型の自動給餌機(図3.2)が設置されている。この自動給餌機は機内に貯蔵された餌を決められた時間に吐き出す仕組みとなっており、自動で駆動されている。最近は、ウミトロン社のようなスタートアップ企業の登場により人工知能を用いた新しい自動給餌機が構築されつつある。魚の行動をモニタリングし餌やりのタイミングを判断する仕組みである。

自動給餌機の人工知能による高度化は残餌の問題に大きな貢献を果たそうとしている。一方で、もう一つの重要な課題が漁業者の労働軽減である。30 個程の生け簀を保有する養殖事業者が一つの給餌機約 400kg 程度の補給を週に 3~5回程度行っている。つまり毎回 12ton の餌補給を人力で行っている計算になる。

二瓶等は、この単純労働かつ重労働を解消する技術としてロボット漁船を研究開発してきた。ロボット漁船の研究開発目的は近年急速に普及し始めている自動給餌機への自動餌補給による養殖事業者の労働軽減である。ロボット漁船は漁港で餌を載せたら養殖生け簀に自動航行し、自動で生け簀に着岸し、画像認識等により自動給餌機側に取り付けられた受け口を見つけ、餌補給ノズルを制御し自動給餌機にエアーを用いて餌補給する技術である(図 3.5).

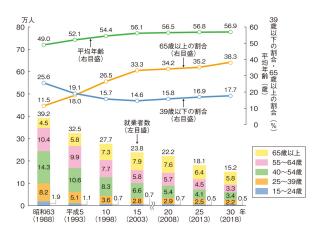


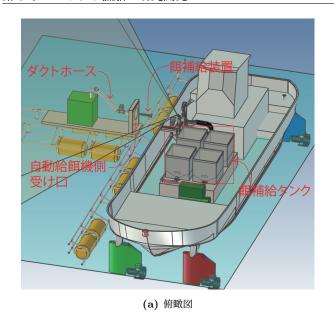
図 3.1: 漁業就業者数の推移 [26]

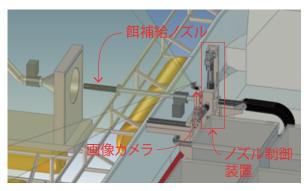
図 3.2: 福伸電機社製自動給餌機

(a) 三重県の場合

(b) 愛媛県の場合

図 3.3: 一般的な養殖場の風景




(a) 生け簀上に置かれた自動給餌機

(b) 保管庫に積まれた餌

図 3.4: 餌の保管庫や生け簀の上の様子

(b) 餌補給ノズル拡大図

図 3.5: ロボット漁船の構想図

生け簀に設置されている自動給餌機に餌補給する為には、当然ながら生け簀に着岸しないといけない。船舶・海洋工学において自動化するのが一番難しい技術とされるのが着岸である。人は経験的に船の惰性、風の強さ等を考えながら着岸させている。人工知能が発展した現在、この経験を学習させて自動着岸させることも可能ではあるが、膨大なシミュレーションと、膨大な実験が必要となる。また、様々な海域での学習も必要であり、実装は現実的ではない。そこで、二瓶等は4つのストラット (アスペクト比の小さな舵) 付きスラスター(推進器)を用いるロボット漁船を考案してきた [27]。その4つのスラスターは独立して360度回転が可能な機構である (図3.6)。4つのスラスターの推力と、その向きを変えることにより水平方向へのあらゆる航行が容易に可能となる。また、ストラットを回転させることにより抵抗が生まれ船としては極めて稀な制動(ブレーキ)が可能となる。このコア技術を用い、想定実機 (最大16m)の1/7モデルを用いて自動航行や自動着岸等の検証試験を実施してきた(詳細は3.2節に示す)。

図 3.6: ロボット漁船のコア技術

世界的にも初の試みであるロボット漁船の商用利用の為には実機の設計開発,実機の製作,実海域実証試験が不可欠である。そこで,この先はロボット漁船の実証機を開発し,三重県大紀町錦湾において実証試験を実施する。また,ユーザーとなる実際の養殖事業者と実証試験に取り組むことで実証機の各種性能の検証に加え,実機のブラッシュアップを行い,ロボット漁船の商用機の技術構築を目指す。

ロボット漁船は、従事者の減少が著しい水産業の現場において生産量の維持・拡大と、労働コストの削減に繋がる.

さらには荒天時でも人に変わって海上の生け簀に餌を補充することが出来るようにもなる.このように、ロボット漁船は水産養殖事業者に大きな価値を提供することが期待される.ロボット漁船は鯛やサーモンやハマチといった自動給餌機を用いる養殖のみならず、今後はマグロやブリなどの大型魚種の比較的沖合の養殖といった船から直接餌やりを行う場合にも利用できるという極めて競争優位性の高い技術に発展していく.

3.2 研究開発経緯

二瓶等は既に下表に纏めるように研究補助を受けロボット漁船を研究開発してきた。下記 No.1 \sim No.3 において,全てロボット漁船の 1/7 モデルを用いた大阪公立大学競泳用プール (長さ $50\text{m} \times \text{幅 } 25\text{m} \times \text{深さ } 1.5\text{m}$) 等での試験となる。実施してきた詳細は下に記すが,様々な試験を通じてロボット漁船のコンセプトを検証してきた。養殖事業に導入する為にはロボット漁船の実機の設計・製造に加え,自然環境下での実海域実証試験が必要であることは言うまでもない。

No.	標題	補助元	補助金名称	期間
1	養殖場における自動給餌機の為の	国立研究開発法人	大学発新産業	2021.11
	自動補給船―ロボット漁船―	科学技術振興機構	創出プログラム	\sim
	の研究開発	(JST)	SBIR フェーズ 1	2022.3
2	ロボット漁船の自動係船手法の	生物系特定産業技術	スタートアップ	2022.11
	確立と,養殖場の自動給餌機への	研究支援センター	総合支援プログラム	\sim
	餌補給手法の確立	(BRAIN)	SBIR フェーズ 2	2023.6
3	ロボット漁船実現の為の航行・	生物系特定産業技術	スタートアップ	2023.7
	係船・餌補給モジュールの	研究支援センター	総合支援プログラム	\sim
	開発	(BRAIN)	SBIR フェーズ 3	2024.3

表 3.1: ロボット漁船に関わる公的資金

ロボット漁船は生け簀における容易な自動着岸を可能にするために 4 つのストラット付きスラスター(推進器)を備える特殊な船である。その為,表 3.1 No. 1 のフェーズ 1 では,ロボット漁船 1/7 モデルを製作し (図 3.7),自動航行制御,狙った位置への自動着岸 (図 3.8, 3.9),ストラットの制動(ブレーキ性能)を検証した。全ての検証において技術的目標を達成し,この 4 つのストラット付きスラスターを有するロボット漁船のコンセプトが自動着岸等の特殊な作業船にとって優位である確証を得た [28].

No. 2のフェーズ 2 では実機を見据え、ロボット漁船の養殖生け簀への自動着岸・係船システムの構築、ロボット漁船から餌を補給する手法の構築等を実施しきてきた(図 3.10 及び図 3.11)。自動着岸において、フェーズ 1 では GPS 及び地磁気センサーで自動誘導していた。しかし、海上の生け簀は係留されているものの、風等の影響で長周期動揺している。そこで LiDAR(レーザー距離測定)により生け簀に取り付けられた 2 つの識別版を捉え生け簀の位置と向きを算出し、且つボラード(係船杭)に電動スライダーを用いて自動係船する手法を構築した。ロボット漁船から自動給餌機への餌補給は、自動給餌機に取り付けた受け口を画像認識し、餌補給ノズルを制御し、エアーで移送する技術を構築した [29]。なお、図 3.11 に示すように餌のエアー搬送により割れ等は確認されなかった。

No.3 では自動航行や自動着岸等の制御を搭載したロボット漁船の自動航行モジュールを研究開発した.

以上述べた No.1~No.3 まで 1/7 相当のロボット漁船の模型船を用いた基本的な試験を実施してきたが,海上での実証試験が今後の課題であると考えている.実機を開発したうえで,実海域における波風がある中での航行試験,航続時間検証試験,係船試験,餌補給試験,制御システムの検証などハードウェア,ソフトウェアに及ぶ検証項目に取り組む必要がある.各機器の塩害や構造劣化も確認する必要がある.また,技術開発もさることながら,ロボット漁船の事業化のためには養殖事業者にとって経済的メリットが感じられることも重要である.したがって,事業化に向けた長期的な実証事業が必須であと考え,実海域試験,実証事業を進める次第である.

図 3.7: ロボット漁船の 1/7 モデル

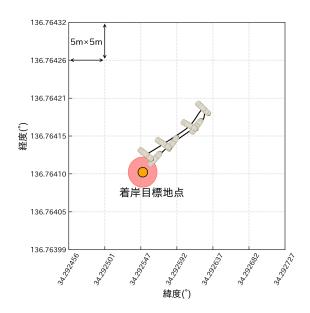


図 3.8: 狙った位置への自動着岸

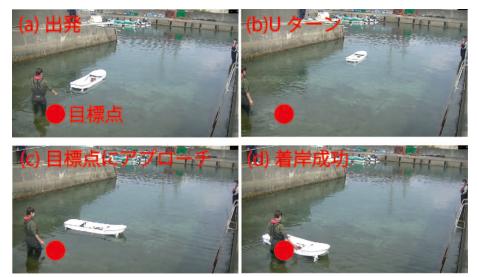


図 3.9: フェーズ 1 におけるロボット漁船の自動着岸検証試験

3.3 社会実装に向けた実証試験 (2024 年 2 月から開始)

この先進める実証試験は大きく 2 つの流れとなる.最初に全長 7m のロボット漁船実機の詳細設計と製造を行い $(3.3.1~\hat{\mathrm{m}})$,次に実海域実証試験により 7m ロボット漁船の各種機能の実証を行う $(3.3.2~\hat{\mathrm{m}})$.図 3.12 に 7m のロボット漁船の実証試験のスケジュールを示す.商用化は 2025 年度を目指している.

3.3.1 7m のロボット漁船実機の詳細設計と製造

開発項目 ア) 7m ロボット漁船の実機の開発と詳細設計

既に図 3.10 及び図 3.11 で示したようにプールによる 1/7 サイズのロボット漁船の自動航行,自動着岸,自動係船試験や,自動給餌機への餌補給の要素技術の確立を終え,現段階では 7m のロボット漁船の実海域実証試験の為の準備を進めている.具体的には 7m のロボット漁船の餌の積載可能重量計算,ロボット漁船の主寸法算出,ロボット漁船実機に必要なスラスター機器選定,船速予測,連続稼働時間の予測等を行った.表 3.2 に 7m のロボット漁船の主寸法や主

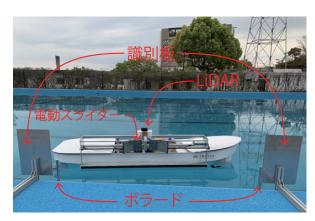


図 3.10: ロボット漁船の 1/7 モデルを用いた要素試験

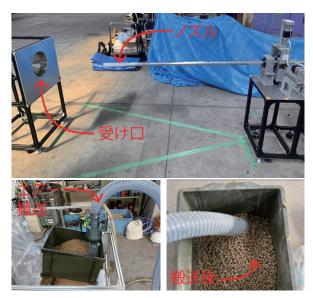


図 3.11: エアーによる餌の搬送

性能を纏める. また,表 3.2 に示した 7m のロボット漁船の CAD 図を図 3.13 に示す.

表 3.2: 7m のロボット漁船の主要目や主性能

項目	值等
船長	$7\mathrm{m}$
船幅	$6.3\mathrm{m}$
軽荷喫水	0.35m
満載喫水	$0.5\mathrm{m}$
軽荷時排水量	2.5ton
満載時排水量	$4 ext{ton}$
積載量	1.5 ton
総トン数	1.3 トン
主機駆動力	ハイブリッド式(バッテリー+発電機)
推進器	電動機 4 機
主機出力	$16.4 \mathrm{kW}$
定格 (最高) 船速	4(7)knot
定格 (最高) 主機出力	$6(18)\mathrm{kW}$
定格 (最高出力時) 連続航行時間	10(1.8) 時間

主性能推定において水槽試験を行い、図 3.13 に示す実証機で用いる予定の電動スラスターの事前調査を行った上で 算出した.結果としてロボット漁船は最大 7knot で航行できることが分かっている.また、連続稼働時間は 10 時間で あることも分かっており、生け簀の巡回として十分な稼働時間を確保できることも分かっている.

概略設計は表 3.2,図 3.13 に示す通りであるが,スラスターの取り付け方法や,餌タンク配置,バッテリー配置,バッテリー固定方法,電気系統,生け簀への係船装置,餌補給装置等の詳細設計が必要である (図 3.14 に実機のイメージ図を示す。)。また,本ロボット漁船は自動航行に加えて,遠隔操船,人が乗船しての手動航行も可能なものとして設計する。その為,手動航行機構部の詳細設計も必要となる。これらの項目を加味した 7m のロボット漁船の詳細設計を行う。

開発項目 イ) 7m のロボット漁船の製造及び販売・サービス価格の検討

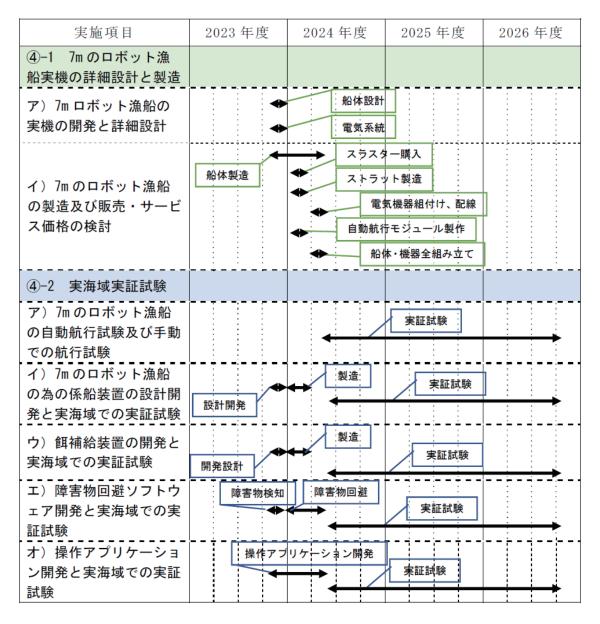


図 3.12: 7m のロボット漁船の商用化までの実証試験スケジュール

7m サイズの本ロボット漁船は GFRP 製となる. 15m 程度までの漁船であれば GFRP による製造が一般的である. ロボット漁船の主な構成部分は船体部, スラスター, ストラット, 電気機器, 自動航行モジュール, 自動着岸装置, 自動餌補給装置となる. 詳細設計の終えたものから製造に取り掛かる. 本ロボット漁船は漁船に該当し, 漁船登録に関わる検査を受ける. 既にこれまで多数の漁船新造のノウハウを有する三重県内の造船会社との折衝を行っており, このような特殊船の製造に関する情報共有を開始している. 漁船登録に関わる検査についても同企業と協力して進める.

また、設計および製造を通じて本ロボット漁船を導入することにより漁業者に1隻当たり年間200万円の経済的なメリットが生まれるようなロボット漁船となるようにする。3都道府県以上でロボット漁船のユーザーとなる養殖事業者等からロボット漁船の導入に関するヒアリングを実施し、経済的メリットを導き出す。

3.3.2 実海域実証試験

開発項目 ア) γ_m のロボット漁船の自動航行試験及び手動での航行試験

実海域試験は三重県大紀町錦湾にて行われる。図 3.3(a) に同海域のタイの養殖場を示す。ここではタイやブリ等が養殖されている。一養殖事業者で 30 程度の生け簀を保有している。ここでは 3 隻の漁船で自動給餌機に餌補給や生け

図 3.13: 7m のロボット漁船の CAD による概略図

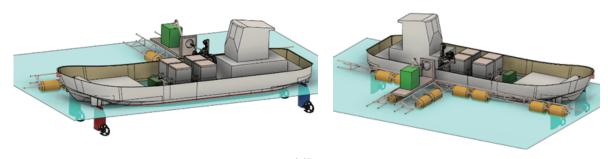


図 3.14: 実機イメージ図

簀への直接餌投入を行っている.他の養殖地域でもヒアリングを通して同じような形態であることを確認している.

自動航行に加えて手動での航行についても試験を繰り返す. 7m の本ロボット漁船は表 3.2 で纏めたように最大船速 7knot, 定格主力時は 4knot と予測された. 実証試験においてもこの船速となるかを調査する. また, 定格出力時は 10時間の連続稼働が見込まれるので実証試験において調査を進める.

現時点では、自動給餌機を設置可能な海域を対象としており、常時波風の激しい沖合等での運用を考慮していないが、ロボット漁船は無人船であるためその特徴を活かし、より荒天時での運用可否を調査することも重要である。本実証試験において運用可能な限界風速、限界波高を求める。まずは風速 5 m/s、波高 0.5 m程度での実証を一つの目途とし、その後、無人船であることの利点を最大限活かすことができるよう、徐々により激しい波風での運用を試みる。

開発項目 イ) 7m のロボット漁船の為の係船装置の設計開発と実海域での実証試験

既に図 3.10 に示す様に自動係船が行われてきたが、この機構では力を十分に逃すことはできない.そこで、新たな検討を行い、係船中にロボット漁船が動揺しても波の力を逃がす構造を実現する.

この先、係船装置は詳細設計および制御機器設計を行う.また、ロボット漁船の7m モデルに設置できるようにこの係船装置の実証モデルを製作する.この機器はロボット漁船開発項目オ)で示される操作アプリケーションにより遠隔でも操作可能なように開発する.また、ロボット漁船が自動操縦されている時は、自動係船装置の状況がロボット漁船操作アプリケーションからも確認できる仕様とする.陸上での係船装置の試験とともに7mのロボット漁船の自動航行から自動着岸制御を行い、自動着岸後に自動係船することを実証試験により検証する.

開発項目 ウ)餌補給装置の開発と実海域での実証試験

既に図 3.11 や図 3.5(b) で示す様に、BRAIN SBIR フェーズ 2 では餌補給ノズルに取り付けられた画像カメラによ

り自動給餌機側受け口に取り付けられたマーカーを画像認識し受け口中心を 3 次元計測することを実現してきた.これらの認識は 1 秒間隔毎に算出することを達成し,ノズルは 1 秒間隔で制御を実現してきた.ロボット漁船内の餌タンクから自動給餌機への餌補給量 $300 \log/$ 時を達成してきた.

図 3.11 では餌補給ノズルの接続試験は 1/2 サイズの試験であり、餌補給はフルスケールでの試験である。それぞれ個別での要素試験を行ってきた。また、餌補給ノズルの接続試験では画像認識によるノズル位置制御であり接続までは実施していない。

この先は要素ごとに確立してきた餌補給口認識から餌補給ノズルの制御と接続、そして餌補給を可能な装置を一体開発する.フルスケールの餌補給装置を設計及び製作し、7mのロボット漁船に搭載し実証試験により検証する.

開発項目 エ) 障害物回避ソフトウェア開発と実海域での実証試験

障害物検知は、画像解析または LiDAR 装置を用いる。既に二瓶等は LiDAR を用いた障害物回避に取り組んだことがあり、ロボット漁船に技術移転可能な状況にある。画像を用いた障害物距離推定については事前実験を行っている。事前実験では近年急速な発展を遂げている、単眼深度推定法を用いている。まず、カメラ画像から機械学習モデルにより深度を割り出す。事前検討では Zoe Depth という学習済みモデルを用いている。次に各物体の認識は深層学習によるセマンティックセグメンテーションの技術を用いる。これら2つの技術により障害物となる各物体の距離を推定するソフトウェアを開発する。

障害物との距離が推定された段階で障害物を回避するソフトウェアをロボット漁船の制御プログラムに実装する.実証試験では漁船を傭船する.そして、ロボット漁船が傭船した漁船を自動回避し航行できることを検証する.

開発項目 オ) 操作アプリケーション開発と実海域での実証試験

将来的にこのロボット漁船が広く活用されるためには、ロボット漁船の ICT 化を進め、1 人でも容易な操作を可能 にしなくてはならない。陸上からのモニタリングや操作が出来るようアプリケーション開発を行う。

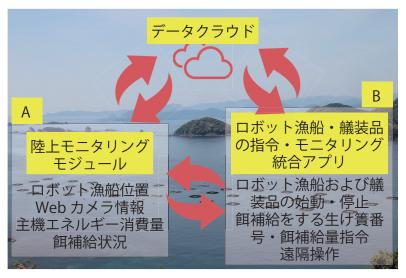
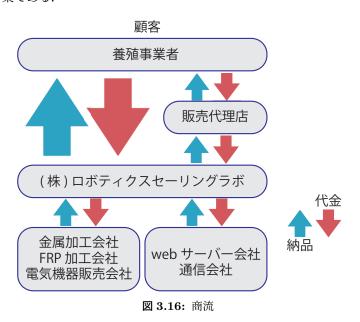


図 3.15: 4G 回線による通信モジュール & アプリ研究開発

ロボット漁船の各種データを陸上の PC 等に送る陸上モニタリングモジュールを新たに開発する。送信データはロボット漁船の位置データ (GPS により取得),搭載 web カメラデータ,電力等のエネルギー消費量に加えて餌補給状況等とする。(図 3.15-A)

PC やスマホ等の端末からもロボット漁船の操縦指令等ができるようにロボット漁船や自動餌補給装置並びに自動係船装置の指令やモニタリングをすることが可能な統合アプリを開発する. 餌補給を行う生け簀番号や餌補補給量等を指令出来るようにする. 端末からカメラデータを見ながら遠隔操船できるようにも研究開発を進める. (図 3.15-B) この指令・モニタリングは統合アプリにより操作出来るようアプリ開発を行う. これらのアプリを装備することにより, ロボット漁船がより容易に使用可能になり, 大幅な労力低減に繋がる. 加えて, 必要なデータについてはデータが残るようにデータクラウドにアップロード出来るようにクラウド化モジュールを開発する.


3.4 実用化・産業化の見込み

養殖事業者にとって、ロボット漁船を導入する経済的なメリットは、餌補給 (もしくは給餌) をする人件費を削減できることである。試算では、養殖用途の漁船は現在 3800 隻存在しており各々の漁船を使って一人が餌補給をすると、200 万円 (年収 400 万円×半年稼働としている) × 3800 隻= 76 億円となる。したがってロボット漁船の自動餌補給事業は最大 76 億円の利益を得ることができる。この自動餌補給のためのソフトウェアを SaaS(Software as a Service) としてサブスクリプションモデルで提供する。

さらに、養殖事業者は現在持っている漁船をロボット漁船に買い替える必要がある。ロボティクスセーリングラボ社は漁船自体の販売も手掛けていく。試算は次のようになる。 3800 隻が約 20 年で更新されるため年間 190 隻が新造される。 仮ではあるが 190 隻すべてを我々が販売したとすると,1 隻 5000 万円として,190 隻 $\times5000$ 万円 = 95 億円の売上となる。 利益率が 10% とすると 9.5 億円の利益を生む。 我々で製造が賄いきれないまれない場合は中小の造船会社と提携し需要に対して供給をしていく計画である。

商流を図 3.16 に示す. ハードウェアとして部品加工会社,電気機器販売会社からの調達,ソフトウェア関連としてサーバ会社,通信会社との取引を行う. 完成した製品は自社での直接販売や販売代理店を通し,顧客である養殖事業者へ納める.

ロボット漁船の製造側にとっても,ユーザーである養殖事業者側にとっても経済的なメリットは大きく実用化,産業化の見込みが極めて高い事業である.

3.5 ロボット漁船を製造するスタートアップ企業の立ち上げ

ロボット漁船に関わる研究開発は 2021 年度に始まった。ロボット漁船に関わる基本特許は [27] に示されるようにこの時期に出願されている。既に 3.2 節で述べたように、最初の重要なコンセプトの検証である自動着岸について 2021 年度に行い、2022 年度は餌補給技術の構築等の要素技術の研究開発を行った。ロボット漁船の実機開発には実海域での長期間の試験が必要になり大きな開発資金が必要となる。既存の企業への技術移転も計画の中で検討してきたが、扱う商材や事業規模の大きさ (国内市場規模 171 億円) を鑑みて技術移転交渉はうまく纏まらなかった。その結果、研究者自身で起業しこの技術の社会実装を目指すべきであるという考えに行き着き (株) ロボティクスセーリングラボを起ち上げるに至った。それが 2023 年 4 月のことである。

ロボット漁船の販売の事業化までには数年の時間を要する.また,多額の研究開発費用を必要とする.銀行の融資は

売り上げ見込みが立たなければ受けられない.このような場合のスキームとして出資という手段がある.即ち,ベンチャーキャピタル (VC) 等が将来的な利益を見込んで,会社の株式と引き換えに資金を援助する投資方法である.この方法を頼っての研究開発の道を辿ることとした.起業して早々はシード期と言われ,VC による伴走支援も非常に重要となる.幸いにして熱心に伴走支援して頂ける VC であるライトアップベンチャーズと (株) ロボティクスセーリングラボ社は出会い,2023 年 6 月末に出資契約に至っている [30].これが (株) ロボティクスセーリングラボがスタートアップ企業となった所以である.

我が国の食料自給率向上や鮨に代表される食文化の為には水産業の発展は大変重要なことは言うまでもない.近年では養殖漁業は水産業を支える大きな産業に成長を遂げていることは周知の事実である.養殖漁業の持続的な発展を鑑みると事業者の労働軽減や生産規模拡大や生産効率の向上は待ったなしの大きな社会課題である.ロボット漁船は養殖事業を支える革新的な技術であると考えており、ロボット漁船を安定的に生産・供給可能な体制構築が今後の(株)ロボティクスセーリングラボには求められてくる.その為にも(株)ロボティクスセーリングラボは上場またはM&Aを目指し、安定的な資金のもとで事業継続をする必要があろう.(株)ロボティクスセーリングラボはシード出資を受けはしたが、それは入口に立っただけであり、目的達成に向けて新たな増資の必要が生じてくる.例えば、技術スタッフや営業人材や各種経営人材の採用や、ロボット漁船に関わる開発、製造設備構築に向けた資金増強である.

現在,(株) ロボティクスセーリングラボは「1次産業に追い風を!」(Tailwind for primary industry.) というミッションを打ち立て,養殖漁業の発展のみならず広く1次産業の機械化や自動化や情報化に関わる商品企画や商品開発も開始している。ラボレベルでの試験が終わっているシーズ技術の規模拡大には機械化や自動化が必要となる。このような装置はゼロレベルからの開発が必要になる為,総合工学,機械工学一般の専門知識を持つ (株) ロボティクスセーリングラボがそれを請け負っていく。(株) ロボティクスセーリングラボが1次産業生産者の更なる価値を引き出し,「1次産業に追い風を!」吹かすことが出来る企業として存在していきたいと考えている。

第4章

あとがき

大阪公立大学工学部海洋システム工学科の概論の講義資料として浮体運動にまつわる海事流体力学研究室 (二瓶研究室) の研究活動を紹介しました.

第1章では四胴型自動航行船について纏めました.元々北海道火散布沼のウニ養殖場で起きていた大きな被害を調べている際に自動航行船,中でも特に定点で留まる機能の有する船の必要性に駆られて研究開発を始めたものです.2015年の四胴型自動航行船のコンセプト検討から始め,実際の開発,漁業の現場での試験運用をようやく開始するところまできています.2020年に関係機関の大きな協力を得て大型の実証試験が始まるとこまでこぎつけています.次の目標は,この自動航行船を地元の方々でも誰でも手軽に使えるまでに高度化し,この自動航行船を用いて養殖場の水質データ化を実現したいと考えています.漁師さんたちがデータに基づく確かな養殖が出来るようお手伝いをしていきたいと考えてます.

第2章では浮体式洋上風車について纏めました。来るべき時代に備えエネルギー問題に資することをしたいと思い2010年頃から取り組み始めました。2015年には研究室としては大きなプロジェクトである実海域試験に取り組みました。発電機そのものの製作からブレード製作,風車タワー製作,浮体製作に始まり,海上での浮体式風車の設置や撤去,そして長期間に渡る試験はかけがえのない経験を積んだと思います。まさに総合工学的な視点が重要でした。私が実海域試験で取り組んだのは一点係留式浮体式風車で,2015年当時は見向きもされない形式でしたが,2017年頃からNEDOを始めフランスでもこの方式が採用された大きな実証試験が始まっています。

私の考える総合工学について少しはお分かり頂けたでしょうか. 四胴型自動航行船なら, ハードウェア部である船体, プロペラ, 駆動するモータ, ギア, バッテリー, ソフトウェア部である制御機器, GPS や地磁気やポテンショメータといったセンサー部もあります。これらのどれか1つでも欠けてしまっては, この船を動かすことは決してできないのです. 浮体式風車も同じで, 発電機, 風車ブレード, タワー, 浮体, 係留系のどれか1つでも欠けてしまっては機能しません. 総合的な視点に立ち1つの新しいモノを生み出すことが総合工学なのかと思います. これらは社会の問題点に基づくモノなので, 問題点解決のための新しいコトづくりを始めることも必要かと思います. こうした総合的な視点で明日を解決する「モノ・コト」を生み出していくのが総合工学の理想だと思っています. 専門を異にする仲間たちと新たな技術を生み出して「モノ・コト」を生み出した時, 科学者の端くれとして非常にワクワクします.

最後に2つ,3つ,重要かなと思う私見を述べておきたいと思います.1つは常日頃から色々なことに疑問点を持つことではないかと思います.どうしてこんなものが世の中に無いのか,こんなものが世の中にあったら便利になるのにな,こんなことに困っている人が居たら助けられないものか,何でも良いと思います.学生の間に色々と疑問を持ち,それを実現するためには何をどうしたら良いのか考え続けることだろうと思います.もう1つ重要かなと思うことは,問題点を解決できる仕組みを考え,生み出すことです.色々と解析することは重要だろうけど,やっぱり大切なことは解決策を生み出すことです。そして,その時鍵になるかなと思うことは,全く専門を異にする人たちとどれだけ協力し合えるかということだろうと思います.四胴型自動航行船プロジェクトは私のような総合工学を専門にする人や,水産,水文,土木,計測,行政,漁業の方々が協力して進めています。とても刺激的で研究開発していて楽しいです。学生の間に限られた専門分野や大学のコミュニティという"タコツボ"から出て,多様な視点で物事を捉え,色んな分野の人に出会い,その貴重な出会いを大切に刺激を受けたり与えたりしていって欲しいと思います.

参考文献

- [1] 二瓶泰範, 北村眞一, 宮本一之, 外城正昭, 石井好治, 近本雅彦, 篠井隆之, 増田憲和. 船舶 特許第 6332824 号. 2017.
- [2] 二瓶泰範, 北村眞一, 外城正昭, 篠井隆之, 増田憲和. 船舶 特許第 6796292 号. 2020.
- [3] Ryosuke Saga, Zhipeng Liang, Naoyuki Hara, and Yasunori Nihei. Optimal Route Search Based on Multi-objective Genetic Algorithm for Maritime Navigation Vessels, pp. 506–518. Springer International Publishing, 2020.
- [4] Mingyao Ji, Sharath Srinivasamurthy, and Yasunori Nihei. Basic research on the influence of descent flow from small unmanned aerial vehicle(quadcopter) on a small floating body. *Proceedings of ASME 2020 39th international conference on ocean, offshore and arctic engineering(OMAE2020)*, No. OMAE2020-18787, pp. 1–9, 2020.
- [5] 二瓶泰範, 鶴見悠太郎, 増田憲和, 原田浩太朗, 奥野充一, 原尚之, 中田聡史. 四胴型自動航行船による高密度・高頻度な自動水質環境計測. 土木学会論文集 B1(水工学), Vol. 76, No. 2, pp. 1039–1044, 2020.
- [6] M Komizo, K Mukai, N Hara, Y Nihei, and K Konishi. Sea testing of automatic motion control system for a quad-maran unmanned vessel. *Proc. of 2019 International Automatic Control Conference*, 2019.
- [7] 関西造船協会. 造船設計便覧. 第 4 版. 海文堂, 1983.
- [8] Wikipedia. 技術成熟度レベル.
- [9] 藤岡弘幸. TLPを利用した新形式洋上風力発電の運動特性と発電量予測に関する研究. 大阪府立大学工学部海洋システム工学科, 2010.
- [10] 経済産業省資源エネルギー庁. 令和元年度エネルギーに関する年次報告 (エネルギー白書 2020). 2020. https://www.enecho.meti.go.jp/about/whitepaper/2020html/2-1-1.html.
- [11] Ramboll. Anholt offshore wind farm denmark's largest offshore wind farm. Technical report, Ramboll, 2011. https://ramboll.com/projects/re/anholt-offshore-wind-farm.
- [12] 経済産業省資源エネルギー庁. 第 2 回 洋上風力の産業競争力強化に向けた官民協議会, 2020. https://www.meti.go.jp/shingikai/energy_environment/yojo_furyoku/002.html.
- [13] NGI(Norwegian Geotechnical Institute). R & d program—oc6 improve offshore wind computer modelling. Technical report, NGI(Norwegian Geotechnical Institute), 2019. https://www.ngi.no/eng/Projects/OC6-improve-offshore-wind-computer-modelling.
- [14] Walt Musial. Overview of floating offshore wind. National Renewable Energy Laboratory (NREL), 2020. https://www.nrel.gov/news/video/overview-of-floating-offshore-wind-text.html.
- [15] Yasunori Nihei, Kazuhiro Iijima, Motohiko Murai, and Tomoki Ikoma. A comparative study of motion performance of four different fowt designs in combined wind and wave loads. 33rd International Conference on Ocean, Offshore and Arctic Engineering, No. OMAE2014-24643, pp. 1–10, 2014.
- [16] Irene Rummelhoff. World's first floating wind farm has started production. Technical report, equinor, 2017. https://www.equinor.com/en/news/worlds-first-floating-wind-farm-started-production.html.
- [17] EnergyShift 編集部. 戸田建設に聞く(2)実用化が進む洋上風力発電~戸田建設が挑む「浮体式」とは. Technical report, EnergyShift, 2019. https://energy-shift.com/news/aa2dc32a-886c-4b85-bdd7-f3bb9b54e7de.
- [18] 二瓶泰範, 神田信之, 高岩千人, 北村眞一, 小田健次, 久川俊一, 増山豊. 一点係留機構を用いた浮体式洋上風車の実

参考文献 27

海域試験. 日本船舶海洋工学会平成 27 年春季講演会論文集, No. 20, pp. 49-52, 2019.

- [19] 二瓶泰範, 北村眞一, 松田有祐, 神田信之, 高岩千人. 浮体式洋上風力発電装置 特許 6617907 号. 2019.
- [20] Yasunori Nihei, Yusuke Matsuda, Shinichi Kitamura, Kazuhito Takaiwa, and Nobuhiro Kanda. Research and development about the mechanisms of a single point mooring system for offshore wind turbines. *Ocean Engineering*, Vol. 147, pp. 431–446, 2018.
- [21] 国立研究開発法人新エネルギー・産業技術総合開発機構 (NEDO) 他. 日本初のバージ型浮体式洋上風力発電システム実証機が完成—北九州市沖に設置後、実証運転開始へ—. Technical report, NEDO, 2018. https://www.nedo.go.jp/news/press/AA5_101008.html.
- [22] Hideyuki Suzuki, Hiroki Shiohara, Anja Schnepf, Hidetaka Houtani, Lucas H. S. Carmo, Shinichiro Hirabayashi, Ken Haneda, Toshiki Chujo, Yasunori Nihei, Edgard B. Malta, and Rodolfo T. Goncalves. Wave and wind responses of a very-light fowt with guy-wired-supported tower: Numerical and experimental studies. *Journal of Marine Science and Engineering*, Vol. 8, No. 11, pp. 841–841, 2020.
- [23] EOLINK. First prototype 1/10th 2018. Technical report, EOLINK, 2018. http://eolink.fr/fr/.
- [24] 株式会社ロボティクスセーリングラボ公式ホームページ, 2023. https://www.robosailing.com/.
- [25] 大阪公立大学ホームページ. 株式会社ロボティクスセーリングラボを大学発ベンチャーとして認定, 2023. https://www.omu.ac.jp/info/news/entry-07979.html.
- [26] 農林水産省水産庁. 令和元年度水産白書. 2019.
- [27] 二瓶泰範, 阪本啓志, 増田憲和. 船舶 特願 2021-192585. 2021.
- [28] 二瓶泰範, 季明耀, 阪本啓志, 増田憲和. 養殖場における自動給餌機の為の自動補給船ーロボット漁船ーの自動航行と自動着岸の研究. 日本船舶海洋工学会講演会論文集, No. 35, pp. 447-450, 2022.
- [29] 二瓶泰範, 吉良浩司, 阪本啓志. ロボット漁船の自動係船手法の確立と, 養殖場の自動給餌機への餌補給手法の確立. 養殖場高度化推進研究センターセミナー, 2023.
- [30] 株式会社日本経済新聞社. 大阪にもシード VC 設立. 日本経済新聞, 2023. 8月 23日第 33 面関西経済.